For those interested in detailed probabilities, here is what I have computed, and the comparison with a default investigator.
The bag I use is the following: [+1 (elder sign), +1, 0, 0, -1, -1, -1, -2, -2, -3, -3, -4, -4, AUTO_FAIL];
| Result |
Base prob% |
Cum. Base prob% |
Jacqueline prob% |
Cum. Jacqueline prob% |
Jacqueline diff% |
| 2 | 0.00 | 0.00 | 0.27 | 0.27 | +0.27 |
| 1 | 14.29 | 14.29 | 34.34 | 34.62 | +20.33 |
| 0 | 14.29 | 28.57 | 24.18 | 58.79 | +30.22 |
| -1 | 21.43 | 50.00 | 20.33 | 79.12 | +29.12 |
| -2 | 14.29 | 64.29 | 7.42 | 86.54 | +22.25 |
| -3 | 14.29 | 78.57 | 4.95 | 91.48 | +12.91 |
| -4 | 14.29 | 92.86 | 3.02 | 94.51 | +1.65 |
| -5 | 0.00 | 92.86 | 2.75 | 97.25 | +4.40 |
| -6 | 0.00 | 92.86 | 1.37 | 98.63 | +5.77 |
| -7 | 0.00 | 92.86 | 1.10 | 99.73 | +6.87 |
| -8 | 0.00 | 92.86 | 0.27 | 100.00 | +7.14 |
| AUTO_FAIL | 7.14 | 100.00 | 0.00 | 100.00 | +0.00 |
The "cum. prob" is the probability to have a result higher or equal to the given value.
So Jacquelines offers a nice bonus probability on everything.